Ceny podane na stronie są cenami zakupu, uwzgledniającymi rabat od ceny detalicznej
-
Wnioskowanie przyczynowe w Pythonie. Praktyczne wykorzystanie w branży technologicznej
Symbol:
60,86 zł Brutto
0,00 zł Brutto
Program lojalnościowy dostępny jest tylko dla zalogowanych klientów.
Wysyłka w ciągu | 24 - 48 godzin |
Cena przesyłki | 15,00 zł Brutto |
Dostępność | 6 szt. |
Kod kreskowy | |
ISBN | 978-83-289-0881-9 |
EAN | 9788328908819 |
Wnioskowanie przyczynowe przydaje się w sytuacji, gdy trzeba określić wpływ decyzji biznesowej na konkretny wynik, na przykład wielkość sprzedaży. Działania te są dobrze znane nauce, ale dopiero od niedawna świat poznaje korzyści z ich zastosowania w branży technologicznej. Przyczyniły się do tego postępy w uczeniu maszynowym, automatyzacji procesów i danologii. Teraz, aby uzyskać wymierne korzyści, wystarczy kilka wierszy kodu w Pythonie.
Poznaj narzędzia najbardziej znanych analityków danych korzystających z Pythona!
Tę książkę docenią w szczególności analitycy danych. Wyjaśniono w niej potencjał wnioskowania przyczynowego w zakresie szacowania wpływu i efektów w biznesie. Opisano klasyczne metody wnioskowania przyczynowego, w tym testy A/B, regresja liniowa, wskaźnik skłonności, metoda syntetycznej kontroli i metoda różnicy w różnicach, przy czym skoncentrowano się przede wszystkim na praktycznym aspekcie tych technik. Znalazło się tu również omówienie nowoczesnych rozwiązań, takich jak wykorzystanie uczenia maszynowego do szacowania heterogenicznych efektów. Każda metoda została zilustrowana opisem zastosowania w branży technologicznej.
Poznaj narzędzia najbardziej znanych analityków danych korzystających z Pythona!
Tę książkę docenią w szczególności analitycy danych. Wyjaśniono w niej potencjał wnioskowania przyczynowego w zakresie szacowania wpływu i efektów w biznesie. Opisano klasyczne metody wnioskowania przyczynowego, w tym testy A/B, regresja liniowa, wskaźnik skłonności, metoda syntetycznej kontroli i metoda różnicy w różnicach, przy czym skoncentrowano się przede wszystkim na praktycznym aspekcie tych technik. Znalazło się tu również omówienie nowoczesnych rozwiązań, takich jak wykorzystanie uczenia maszynowego do szacowania heterogenicznych efektów. Każda metoda została zilustrowana opisem zastosowania w branży technologicznej.
Nie ma jeszcze komentarzy ani ocen dla tego produktu.
- Producenci